zipcodeR is an all-in-one toolkit of functions and data for working with ZIP codes in R.

This document will introduce the tools provided by zipcodeR for improving your workflow when working with ZIP code-level data. The goal of these examples is to help you quickly get up and running with zipcodeR using real-world examples.

Basic search functions

First thing's first: zipcodeR's data & basic search functions are a core component of the package. We'll cover these before showing you how you can implement this package with a real-world example.

Data

The package ships with an offline database containing 24 columns of data for each ZIP code. You can either keep all 24 variables or filter to just one of these depending on what data you need.

The columns of data provided are: zipcode, zipcode_type, major_city, post_office_city, common_city_list, county, state, lat, lng, timezone, radius_in_miles, area_code_list, population, population_density, land_area_in_sqmi, water_area_in_sqmi, housing_units, occupied_housing_units, median_home_value, median_household_income, bounds_west, bounds_east, bounds_north, bounds_south

Searching for ZIP codes by state

Let's begin by using zipcodeR to find all ZIP codes within a given state.

Getting all ZIP codes for a single state is simple, you only need to pass a two-digit abbreviation of a state's name to get a tibble of all ZIP codes in that state. Let's start by finding all of the ZIP codes in New York:

search_state('NY')
## # A tibble: 2,208 x 24
##    zipcode zipcode_type major_city   post_office_city common_city_list county   
##    <chr>   <chr>        <chr>        <chr>                 <list<raw>> <chr>    
##  1 00501   Unique       Holtsville   <NA>                         [22] Suffolk …
##  2 00544   Unique       Holtsville   <NA>                         [22] Suffolk …
##  3 06390   PO Box       Fishers Isl… Fishers Island,…             [32] Suffolk …
##  4 10001   Standard     New York     New York, NY                 [20] New York…
##  5 10002   Standard     New York     New York, NY                 [34] New York…
##  6 10003   Standard     New York     New York, NY                 [20] New York…
##  7 10004   Standard     New York     New York, NY                 [37] New York…
##  8 10005   Standard     New York     New York, NY                 [35] New York…
##  9 10006   Standard     New York     New York, NY                 [31] New York…
## 10 10007   Standard     New York     New York, NY                 [20] New York…
## # … with 2,198 more rows, and 18 more variables: state <chr>, lat <dbl>,
## #   lng <dbl>, timezone <chr>, radius_in_miles <dbl>,
## #   area_code_list <list<raw>>, population <int>, population_density <dbl>,
## #   land_area_in_sqmi <dbl>, water_area_in_sqmi <dbl>, housing_units <int>,
## #   occupied_housing_units <int>, median_home_value <int>,
## #   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
## #   bounds_north <dbl>, bounds_south <dbl>

What if you only wanted the actual ZIP codes and no other variables? You can use R's dollar sign operator to select one column at a time from the output of zipcodeR's search functions:

nyzip <- search_state('NY')$zipcode

Searching multiple states at once

You can also search for ZIP codes in multiple states at once by passing a vector of state abbreviations to the search_states function like so:

states <- c('NY','NJ','CT')

search_state(states)
## # A tibble: 3,378 x 24
##    zipcode zipcode_type major_city  post_office_city  common_city_list county   
##    <chr>   <chr>        <chr>       <chr>                  <list<raw>> <chr>    
##  1 06001   Standard     Avon        Avon, CT                      [16] Hartford…
##  2 06002   Standard     Bloomfield  Bloomfield, CT                [22] Hartford…
##  3 06006   Unique       Windsor     <NA>                          [19] Hartford…
##  4 06010   Standard     Bristol     Bristol, CT                   [19] Hartford…
##  5 06011   PO Box       Bristol     <NA>                          [19] Hartford…
##  6 06013   Standard     Burlington  Burlington, CT                [36] Hartford…
##  7 06016   Standard     Broad Brook Broad Brook, CT               [46] Hartford…
##  8 06018   Standard     Canaan      Canaan, CT                    [18] Litchfie…
##  9 06019   Standard     Canton      Canton, CT                    [34] Hartford…
## 10 06020   Standard     Canton Cen… Canton Center, CT             [25] Hartford…
## # … with 3,368 more rows, and 18 more variables: state <chr>, lat <dbl>,
## #   lng <dbl>, timezone <chr>, radius_in_miles <dbl>,
## #   area_code_list <list<raw>>, population <int>, population_density <dbl>,
## #   land_area_in_sqmi <dbl>, water_area_in_sqmi <dbl>, housing_units <int>,
## #   occupied_housing_units <int>, median_home_value <int>,
## #   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
## #   bounds_north <dbl>, bounds_south <dbl>

This results in a tibble containing all ZIP codes for the states passed to the search_states() function.

Searching by county

It is also possible to search for ZIP codes located in a particular county within a state.

Let's find all of the ZIP codes located within Ocean County, New Jersey:

search_county('Ocean','NJ')
## # A tibble: 32 x 24
##    zipcode zipcode_type major_city   post_office_city  common_city_list county  
##    <chr>   <chr>        <chr>        <chr>                  <list<raw>> <chr>   
##  1 08005   Standard     Barnegat     Barnegat, NJ                  [20] Ocean C…
##  2 08006   PO Box       Barnegat Li… Barnegat Light, …             [33] Ocean C…
##  3 08008   Standard     Beach Haven  Beach Haven, NJ               [61] Ocean C…
##  4 08050   Standard     Manahawkin   Manahawkin, NJ                [47] Ocean C…
##  5 08087   Standard     Tuckerton    Tuckerton, NJ                 [51] Ocean C…
##  6 08092   Standard     West Creek   West Creek, NJ                [22] Ocean C…
##  7 08527   Standard     Jackson      Jackson, NJ                   [19] Ocean C…
##  8 08533   Standard     New Egypt    New Egypt, NJ                 [21] Ocean C…
##  9 08701   Standard     Lakewood     Lakewood, NJ                  [20] Ocean C…
## 10 08721   Standard     Bayville     Bayville, NJ                  [20] Ocean C…
## # … with 22 more rows, and 18 more variables: state <chr>, lat <dbl>,
## #   lng <dbl>, timezone <chr>, radius_in_miles <dbl>,
## #   area_code_list <list<raw>>, population <int>, population_density <dbl>,
## #   land_area_in_sqmi <dbl>, water_area_in_sqmi <dbl>, housing_units <int>,
## #   occupied_housing_units <int>, median_home_value <int>,
## #   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
## #   bounds_north <dbl>, bounds_south <dbl>

Approximate matching of county names

Sometimes working with county names can be messy and there might not be a 100% match between our database and the name. The search_county() function can be configured to use base R's agrep function for these cases via an optional parameter.

One example where this feature is useful comes from the state of Louisiana. Since Louisiana has parishes, their county names don't line up exactly with how other states name their counties.

This example uses approxmiate matching to retrieve all ZIP codes for St. Bernard Parish in Louisiana:

search_county("ST BERNARD","LA", similar = TRUE)$zipcode
## [1] "70032" "70043" "70044" "70075" "70085" "70092"

Try running the above code with the similar parameter set to FALSE or not present and you'll receive an error.

Finding out more about your ZIP codes

What if you already have a dataset containing ZIP codes and want to find out more about that particular area?

Using the reverse_zipcode() function, we can get up to 24 more columns of data when given a ZIP code.

Data: U.S. Real Estate Market

To explore how zipcodeR can enhance your data & workflow, we will use a public dataset from the National Association of Realtors containing data about housing market trends in the United States.

This dataset, which is updated monthly, contains 9259 observations with current housing market data from the National Association of Realtors hosted on Amazon S3

This is what the data we will be working with looks like:

head(real_estate_data)
## # A tibble: 6 x 40
##   month_date_yyyymm postal_code zip_name flag  median_listing_… median_listing_…
##               <dbl> <chr>       <chr>    <chr>            <dbl>            <dbl>
## 1            202105 90066       los ang… <NA>           1499000          -0.0422
## 2            202105 48329       waterfo… *               244900          -0.203 
## 3            202105 35967       fort pa… *               189000          -0.0536
## 4            202105 73049       jones, … *               499100           0.0204
## 5            202105 34237       sarasot… *               359000          -0.0297
## 6            202105 17402       york, pa *               329900           0.0679
## # … with 34 more variables: median_listing_price_yy <dbl>,
## #   active_listing_count <dbl>, active_listing_count_mm <dbl>,
## #   active_listing_count_yy <dbl>, median_days_on_market <dbl>,
## #   median_days_on_market_mm <dbl>, median_days_on_market_yy <dbl>,
## #   new_listing_count <dbl>, new_listing_count_mm <dbl>,
## #   new_listing_count_yy <dbl>, price_increased_count <dbl>,
## #   price_increased_count_mm <dbl>, price_increased_count_yy <dbl>,
## #   price_reduced_count <dbl>, price_reduced_count_mm <dbl>,
## #   price_reduced_count_yy <dbl>, pending_listing_count <dbl>,
## #   pending_listing_count_mm <dbl>, pending_listing_count_yy <dbl>,
## #   median_listing_price_per_square_foot <dbl>,
## #   median_listing_price_per_square_foot_mm <dbl>,
## #   median_listing_price_per_square_foot_yy <dbl>, median_square_feet <dbl>,
## #   median_square_feet_mm <dbl>, median_square_feet_yy <dbl>,
## #   average_listing_price <dbl>, average_listing_price_mm <dbl>,
## #   average_listing_price_yy <dbl>, total_listing_count <dbl>,
## #   total_listing_count_mm <dbl>, total_listing_count_yy <dbl>,
## #   pending_ratio <dbl>, pending_ratio_mm <dbl>, pending_ratio_yy <dbl>

Note: The data used in this vignette was filtered to only include valid 5-digit ZIP codes as zipcodeR does not yet have a function for normalizing ZIP codes. The full Realtor dataset will have a different number of rows.

We'll focus on the first row for now, which represents the town of Los Angeles, Ca.

real_estate_data[1,]
## # A tibble: 1 x 40
##   month_date_yyyymm postal_code zip_name flag  median_listing_… median_listing_…
##               <dbl> <chr>       <chr>    <chr>            <dbl>            <dbl>
## 1            202105 90066       los ang… <NA>           1499000          -0.0422
## # … with 34 more variables: median_listing_price_yy <dbl>,
## #   active_listing_count <dbl>, active_listing_count_mm <dbl>,
## #   active_listing_count_yy <dbl>, median_days_on_market <dbl>,
## #   median_days_on_market_mm <dbl>, median_days_on_market_yy <dbl>,
## #   new_listing_count <dbl>, new_listing_count_mm <dbl>,
## #   new_listing_count_yy <dbl>, price_increased_count <dbl>,
## #   price_increased_count_mm <dbl>, price_increased_count_yy <dbl>,
## #   price_reduced_count <dbl>, price_reduced_count_mm <dbl>,
## #   price_reduced_count_yy <dbl>, pending_listing_count <dbl>,
## #   pending_listing_count_mm <dbl>, pending_listing_count_yy <dbl>,
## #   median_listing_price_per_square_foot <dbl>,
## #   median_listing_price_per_square_foot_mm <dbl>,
## #   median_listing_price_per_square_foot_yy <dbl>, median_square_feet <dbl>,
## #   median_square_feet_mm <dbl>, median_square_feet_yy <dbl>,
## #   average_listing_price <dbl>, average_listing_price_mm <dbl>,
## #   average_listing_price_yy <dbl>, total_listing_count <dbl>,
## #   total_listing_count_mm <dbl>, total_listing_count_yy <dbl>,
## #   pending_ratio <dbl>, pending_ratio_mm <dbl>, pending_ratio_yy <dbl>

The Realtor dataset contains a column named postal_code containing the ZIP code that identifies the town. We'll use this to find out more about Los Angeles than what is provided in the housing market data.

Reverse ZIP code search

So far we've covered the functions provided by zipcodeR for searching ZIP codes across multiple geographies. The package also provides a function for going in reverse, when given a 5-digit ZIP code. Introducing reverse_zipcode():

# Get the ZIP code of the first row of data
zip_code <- real_estate_data[1,]$postal_code

# Pass the ZIP code to the reverse_zipcode() function

reverse_zipcode(zip_code)
## # A tibble: 1 x 24
##   zipcode zipcode_type major_city post_office_city common_city_list county state
##   <chr>   <chr>        <chr>      <chr>                 <list<raw>> <chr>  <chr>
## 1 90066   Standard     Los Angel… Los Angeles, CA              [23] Los A… CA   
## # … with 17 more variables: lat <dbl>, lng <dbl>, timezone <chr>,
## #   radius_in_miles <dbl>, area_code_list <list<raw>>, population <int>,
## #   population_density <dbl>, land_area_in_sqmi <dbl>,
## #   water_area_in_sqmi <dbl>, housing_units <int>,
## #   occupied_housing_units <int>, median_home_value <int>,
## #   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
## #   bounds_north <dbl>, bounds_south <dbl>

Relating ZIP codes to Census data

You may also be interested in relating data at the ZIP code level to Census data. zipcodeR currently provides a function for getting all Census tracts when provided with a 5-digit ZIP code.

Let's find out how many Census tracts are in the ZIP code from the previous example.

get_tracts(zip_code)
## # A tibble: 22 x 3
##    ZCTA5 TRACT       GEOID
##    <chr> <chr>       <dbl>
##  1 90066 271300 6037271300
##  2 90066 271400 6037271400
##  3 90066 271500 6037271500
##  4 90066 271600 6037271600
##  5 90066 271901 6037271901
##  6 90066 271902 6037271902
##  7 90066 272100 6037272100
##  8 90066 272201 6037272201
##  9 90066 272202 6037272202
## 10 90066 272301 6037272301
## # … with 12 more rows

Now that you have all of the tracts for this ZIP code, it would be very easy to join this with other Census data, such as that which is available from the American Community Survey and other sources.

But ZIP codes alone are not terribly useful for social science research since they are only meant to represent USPS service areas. The Census Bureau has established ZIP code tabulation areas (ZCTAs) that provide a representation of ZIP codes and can be used for joining with Census data. But not every ZIP code is also a ZCTA.

Testing if a ZIP code is a ZCTA

zipcodeR provides a function for testing if a given ZIP code is also a ZIP code tabulation area. When provided with a vector of 5-digit ZIP codes the function will return TRUE or FALSE based upon whether the ZIP code is also a ZCTA.

is_zcta(zip_code)
## [1] TRUE